Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural, electrical and optical characterization of MOCVD grown In-rich InGaN layers

Identifieur interne : 001500 ( Main/Repository ); précédent : 001499; suivant : 001501

Structural, electrical and optical characterization of MOCVD grown In-rich InGaN layers

Auteurs : RBID : Pascal:12-0432218

Descripteurs français

English descriptors

Abstract

We report on the growth of In-rich InGaN layers on GaN/sapphire templates. InGaN layers of various In contents were grown at a low temperature of 550 C by varying the TMIn partial pressure. A thin InN interlayer was grown to enhance the In incorporation. About 11% absolute In content increase in InGaN was measured compared to a structure without InN interlayer. Low-temperature photoluminescence (PL) measurements were performed. Sufficiently strong PL was detected for InN and In-rich InxGa1-xN (x: 0.76-0.85) layers. An energy difference between the low-temperature PL peak energy and room temperature absorption edge was observed. The difference increases with decreasing In content below 76%, indicating a higher degree of localization of the photo-generated carriers. Surface electrical properties were studied by IR reflectance and X-ray photoemission spectroscopy. The amount of surface electron accumulation in connection with downward band bending decreased with increasing Ga content in the InGaN layer. The highest sheet carrier density was observed for InN with the highest band bending of 0.58 eV, whereas for the In0.20Ga0.80N sample, the band bending is much less (0.03 eV) and the surface carrier density is lower. A transition from an accumulation layer to an electron depletion layer was observed at an In content slightly less than 20%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0432218

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural, electrical and optical characterization of MOCVD grown In-rich InGaN layers</title>
<author>
<name sortKey="Tuna, O" uniqKey="Tuna O">O. Tuna</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
<wicri:noRegion>Kaiserstr. 98</wicri:noRegion>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linhart, W M" uniqKey="Linhart W">W. M. Linhart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lutsenko, E V" uniqKey="Lutsenko E">E. V. Lutsenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue, 68</s1>
<s2>Minsk 220072</s2>
<s3>BLR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>Minsk 220072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rzheutski, M V" uniqKey="Rzheutski M">M. V. Rzheutski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue, 68</s1>
<s2>Minsk 220072</s2>
<s3>BLR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>Minsk 220072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yablonskii, G P" uniqKey="Yablonskii G">G. P. Yablonskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue, 68</s1>
<s2>Minsk 220072</s2>
<s3>BLR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>Minsk 220072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veal, T D" uniqKey="Veal T">T. D. Veal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Stephenson Institute for Renewable Energy, School of Physical Sciences, University of Liverpool</s1>
<s2>Liverpool L69 4ZF</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Liverpool L69 4ZF</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcconville, C F" uniqKey="Mcconville C">C. F. Mcconville</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giesen, C" uniqKey="Giesen C">C. Giesen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
<wicri:noRegion>Kaiserstr. 98</wicri:noRegion>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalisch, H" uniqKey="Kalisch H">H. Kalisch</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vescan, A" uniqKey="Vescan A">A. Vescan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heuken, M" uniqKey="Heuken M">M. Heuken</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
<wicri:noRegion>Kaiserstr. 98</wicri:noRegion>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0432218</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0432218 INIST</idno>
<idno type="RBID">Pascal:12-0432218</idno>
<idno type="wicri:Area/Main/Corpus">001617</idno>
<idno type="wicri:Area/Main/Repository">001500</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption edge</term>
<term>Bending</term>
<term>CVD</term>
<term>Carrier density</term>
<term>Charge carrier generation</term>
<term>Electrical properties</term>
<term>Electronic properties</term>
<term>Gallium</term>
<term>Gallium nitride</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium nitride</term>
<term>Interlayers</term>
<term>MOCVD</term>
<term>Optical properties</term>
<term>Partial pressure</term>
<term>Photoluminescence</term>
<term>Reflection spectrum</term>
<term>Reflectivity</term>
<term>Surface properties</term>
<term>Temperature measurement</term>
<term>X-ray photoelectron spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électronique</term>
<term>Propriété électrique</term>
<term>Propriété optique</term>
<term>Méthode MOCVD</term>
<term>Mécanisme croissance</term>
<term>Pression partielle</term>
<term>Composé III-V</term>
<term>Couche intermédiaire</term>
<term>Mesure température</term>
<term>Photoluminescence</term>
<term>Limite absorption</term>
<term>Génération porteur charge</term>
<term>Propriété surface</term>
<term>Spectre réflexion</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Gallium</term>
<term>Facteur réflexion</term>
<term>Spectre photoélectron RX</term>
<term>Flexion</term>
<term>Densité porteur charge</term>
<term>Semiconducteur III-V</term>
<term>Dépôt chimique phase vapeur</term>
<term>InGaN</term>
<term>Substrat GaN</term>
<term>Substrat saphir</term>
<term>InN</term>
<term>InxGa1-xN</term>
<term>6855J</term>
<term>7868</term>
<term>7340</term>
<term>8115G</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the growth of In-rich InGaN layers on GaN/sapphire templates. InGaN layers of various In contents were grown at a low temperature of 550 C by varying the TMIn partial pressure. A thin InN interlayer was grown to enhance the In incorporation. About 11% absolute In content increase in InGaN was measured compared to a structure without InN interlayer. Low-temperature photoluminescence (PL) measurements were performed. Sufficiently strong PL was detected for InN and In-rich In
<sub>x</sub>
Ga
<sub>1-x</sub>
N (x: 0.76-0.85) layers. An energy difference between the low-temperature PL peak energy and room temperature absorption edge was observed. The difference increases with decreasing In content below 76%, indicating a higher degree of localization of the photo-generated carriers. Surface electrical properties were studied by IR reflectance and X-ray photoemission spectroscopy. The amount of surface electron accumulation in connection with downward band bending decreased with increasing Ga content in the InGaN layer. The highest sheet carrier density was observed for InN with the highest band bending of 0.58 eV, whereas for the In
<sub>0.20</sub>
Ga
<sub>0.80</sub>
N sample, the band bending is much less (0.03 eV) and the surface carrier density is lower. A transition from an accumulation layer to an electron depletion layer was observed at an In content slightly less than 20%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>358</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural, electrical and optical characterization of MOCVD grown In-rich InGaN layers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TUNA (O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LINHART (W. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LUTSENKO (E. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RZHEUTSKI (M. V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YABLONSKII (G. P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VEAL (T. D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MCCONVILLE (C. F.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GIESEN (C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KALISCH (H.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>VESCAN (A.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>HEUKEN (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue, 68</s1>
<s2>Minsk 220072</s2>
<s3>BLR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Stephenson Institute for Renewable Energy, School of Physical Sciences, University of Liverpool</s1>
<s2>Liverpool L69 4ZF</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>51-56</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000506830860100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0432218</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the growth of In-rich InGaN layers on GaN/sapphire templates. InGaN layers of various In contents were grown at a low temperature of 550 C by varying the TMIn partial pressure. A thin InN interlayer was grown to enhance the In incorporation. About 11% absolute In content increase in InGaN was measured compared to a structure without InN interlayer. Low-temperature photoluminescence (PL) measurements were performed. Sufficiently strong PL was detected for InN and In-rich In
<sub>x</sub>
Ga
<sub>1-x</sub>
N (x: 0.76-0.85) layers. An energy difference between the low-temperature PL peak energy and room temperature absorption edge was observed. The difference increases with decreasing In content below 76%, indicating a higher degree of localization of the photo-generated carriers. Surface electrical properties were studied by IR reflectance and X-ray photoemission spectroscopy. The amount of surface electron accumulation in connection with downward band bending decreased with increasing Ga content in the InGaN layer. The highest sheet carrier density was observed for InN with the highest band bending of 0.58 eV, whereas for the In
<sub>0.20</sub>
Ga
<sub>0.80</sub>
N sample, the band bending is much less (0.03 eV) and the surface carrier density is lower. A transition from an accumulation layer to an electron depletion layer was observed at an In content slightly less than 20%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H68</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C40</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Pression partielle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Partial pressure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Couche intermédiaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Interlayers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Mesure température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Temperature measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Limite absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Absorption edge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Génération porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Charge carrier generation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Generación portador carga</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Propriété surface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Surface properties</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Flexion</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Bending</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>CVD</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat GaN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat saphir</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7868</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7340</s0>
<s4>INC</s4>
<s5>67</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>338</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001500 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001500 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0432218
   |texte=   Structural, electrical and optical characterization of MOCVD grown In-rich InGaN layers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024